Artificial neural networks as rainfall- runoff models
نویسندگان
چکیده
A series of numerical experiments, in which flow data were generated from synthetic storm sequences routed through a conceptual hydrological model consisting of a single nonlinear reservoir, has demonstrated the closeness of fit that can be achieved to such data sets using Artificial Neural Networks (ANNs). The application of different standardization factors to both training and verification sequences has underlined the importance of such factors to network performance. Trials with both one and two hidden layers in the ANN have shown that, although improved performances are achieved with the extra hidden layer, the additional computational effort does not appear justified for data sets exhibiting the degree of nonlinear behaviour typical of rainfall and flow sequences from many catchment areas. Modélisation pluie-débit par des réseaux neuroneaux artificiels Résumé Dans une série d'expériences numériques, des débits ont été générés à partir de séquences synthétiques d'événements pluvieux grâce à l'utilisation d'un modèle hydrologique conceptuel constitué d'un seul réservoir non linéaire. Ces expériences ont montré la qualité de l'ajustement que l'on peut obtenir pour ce type de données en mettant en oeuvre des Réseaux Neuronaux Artificiels (RNA). L'utilisation de différents facteurs de standardisation au cours des séquences d'apprentissage et de vérification a permis de mettre en évidence la grande influence de ces facteurs sur la qualité des performances d'un réseau. Les essais effectués avec des RNA comprenant une ou deux couches cachées on montré que, si une amélioration de la performance est obtenue avec une couche cachée supplémentaire, l'effort de calcul correspondant ne semble pas être justifié pour les ensembles de donnés manifestant le degré de comportement non linéaire typique pour des séquences de pluies et de débits rencontrées dans la plupart des bassins versants.
منابع مشابه
Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding
In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...
متن کاملMonthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملبررسی کارایی روشهای مختلف هوش مصنوعی و روش آماری در برآورد میزان رواناب (مطالعه موردی: حوزه شهید نوری کاخک گناباد)
Rainfall-runoff models are used in the field of hydrology and runoff estimation for many years, but despite existing numerous models, the regular release of new models shows that there is still not a model that can provide sophisticated estimations with high accuracy and performance. In order to achieve the best results, modeling and identification of factors affecting the output of the model i...
متن کاملApplication of Machine Learning Approaches in Rainfall-Runoff Modeling (Case Study: Zayandeh_Rood Basin in Iran)
Run off resulted from rainfall is the main way of receiving water in most parts of the World. Therefore, prediction of runoff volume resulted from rainfall is getting more and more important in control, harvesting and management of surface water. In this research a number of machine learning and data mining methods including support vector machines, regression trees (CART algorithm), model tree...
متن کاملFlood Forecasting Using Artificial Neural Networks in Black-Box and Conceptual Rainfall-Runoff Modelling
The paper presents a comparison of lumped runoff modelling approaches, aimed at the realtime forecasting of flood events, based on or integrating Artificial Neural Networks (ANNs). ANNs are used in two ways: (a) as black-box type runoff simulation models or (b) for the real-time improvement of the discharge forecasts issued by a conceptual-type rainfall-runoff model. As far as the coupling of A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996